metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C12.2C42, C6.13C4≀C2, C4⋊C4⋊4Dic3, C12.8(C4⋊C4), (C2×C12).7Q8, (C4×Dic3)⋊5C4, C4.Dic3⋊3C4, C4.2(C4×Dic3), C4.46(D6⋊C4), C3⋊2(C42⋊6C4), (C2×C4).126D12, (C2×C12).488D4, C4.2(C4⋊Dic3), (C2×C4).24Dic6, (C22×C6).43D4, C42⋊C2.2S3, (C22×C4).340D6, C12.61(C22⋊C4), C4.30(Dic3⋊C4), C22.18(D6⋊C4), C23.54(C3⋊D4), C2.1(Q8⋊3Dic3), C2.9(C6.C42), C6.8(C2.C42), C22.4(Dic3⋊C4), (C22×C12).121C22, C22.28(C6.D4), (C3×C4⋊C4)⋊6C4, (C2×C6).4(C4⋊C4), (C2×C4).68(C4×S3), (C2×C4×Dic3).1C2, (C2×C12).57(C2×C4), (C2×C4).36(C2×Dic3), (C2×C4.Dic3).8C2, (C2×C4).268(C3⋊D4), (C2×C6).90(C22⋊C4), (C3×C42⋊C2).2C2, SmallGroup(192,91)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C12.2C42
G = < a,b,c | a12=c4=1, b4=a6, bab-1=a-1, cac-1=a7, cbc-1=a9b >
Subgroups: 248 in 110 conjugacy classes, 51 normal (39 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C2×C4, C2×C4, C23, Dic3, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C3⋊C8, C2×Dic3, C2×C12, C2×C12, C22×C6, C2×C42, C42⋊C2, C2×M4(2), C2×C3⋊C8, C4.Dic3, C4.Dic3, C4×Dic3, C4×Dic3, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C22×Dic3, C22×C12, C42⋊6C4, C2×C4.Dic3, C2×C4×Dic3, C3×C42⋊C2, C12.2C42
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C42, C22⋊C4, C4⋊C4, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2.C42, C4≀C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C42⋊6C4, C6.C42, Q8⋊3Dic3, C12.2C42
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 38 23 29 7 44 17 35)(2 37 24 28 8 43 18 34)(3 48 13 27 9 42 19 33)(4 47 14 26 10 41 20 32)(5 46 15 25 11 40 21 31)(6 45 16 36 12 39 22 30)
(1 44 14 32)(2 39 15 27)(3 46 16 34)(4 41 17 29)(5 48 18 36)(6 43 19 31)(7 38 20 26)(8 45 21 33)(9 40 22 28)(10 47 23 35)(11 42 24 30)(12 37 13 25)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,38,23,29,7,44,17,35)(2,37,24,28,8,43,18,34)(3,48,13,27,9,42,19,33)(4,47,14,26,10,41,20,32)(5,46,15,25,11,40,21,31)(6,45,16,36,12,39,22,30), (1,44,14,32)(2,39,15,27)(3,46,16,34)(4,41,17,29)(5,48,18,36)(6,43,19,31)(7,38,20,26)(8,45,21,33)(9,40,22,28)(10,47,23,35)(11,42,24,30)(12,37,13,25)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,38,23,29,7,44,17,35)(2,37,24,28,8,43,18,34)(3,48,13,27,9,42,19,33)(4,47,14,26,10,41,20,32)(5,46,15,25,11,40,21,31)(6,45,16,36,12,39,22,30), (1,44,14,32)(2,39,15,27)(3,46,16,34)(4,41,17,29)(5,48,18,36)(6,43,19,31)(7,38,20,26)(8,45,21,33)(9,40,22,28)(10,47,23,35)(11,42,24,30)(12,37,13,25) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,38,23,29,7,44,17,35),(2,37,24,28,8,43,18,34),(3,48,13,27,9,42,19,33),(4,47,14,26,10,41,20,32),(5,46,15,25,11,40,21,31),(6,45,16,36,12,39,22,30)], [(1,44,14,32),(2,39,15,27),(3,46,16,34),(4,41,17,29),(5,48,18,36),(6,43,19,31),(7,38,20,26),(8,45,21,33),(9,40,22,28),(10,47,23,35),(11,42,24,30),(12,37,13,25)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | ··· | 4R | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | ··· | 12N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 2 | 2 | 2 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | - | + | - | + | - | + | ||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D4 | Q8 | D4 | Dic3 | D6 | Dic6 | C4×S3 | D12 | C3⋊D4 | C3⋊D4 | C4≀C2 | Q8⋊3Dic3 |
kernel | C12.2C42 | C2×C4.Dic3 | C2×C4×Dic3 | C3×C42⋊C2 | C4.Dic3 | C4×Dic3 | C3×C4⋊C4 | C42⋊C2 | C2×C12 | C2×C12 | C22×C6 | C4⋊C4 | C22×C4 | C2×C4 | C2×C4 | C2×C4 | C2×C4 | C23 | C6 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 4 | 2 | 2 | 2 | 8 | 4 |
Matrix representation of C12.2C42 ►in GL4(𝔽73) generated by
72 | 1 | 0 | 0 |
72 | 0 | 0 | 0 |
0 | 0 | 46 | 0 |
0 | 0 | 27 | 27 |
0 | 46 | 0 | 0 |
46 | 0 | 0 | 0 |
0 | 0 | 46 | 19 |
0 | 0 | 14 | 27 |
46 | 0 | 0 | 0 |
0 | 46 | 0 | 0 |
0 | 0 | 72 | 71 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(73))| [72,72,0,0,1,0,0,0,0,0,46,27,0,0,0,27],[0,46,0,0,46,0,0,0,0,0,46,14,0,0,19,27],[46,0,0,0,0,46,0,0,0,0,72,0,0,0,71,1] >;
C12.2C42 in GAP, Magma, Sage, TeX
C_{12}._2C_4^2
% in TeX
G:=Group("C12.2C4^2");
// GroupNames label
G:=SmallGroup(192,91);
// by ID
G=gap.SmallGroup(192,91);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,253,64,184,1684,851,102,6278]);
// Polycyclic
G:=Group<a,b,c|a^12=c^4=1,b^4=a^6,b*a*b^-1=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^9*b>;
// generators/relations